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Abstract-This paper is part of a series of papers by the author providing the exact transient temperature 
distribution in bodies heated by disk heat sources. The body in this paper is a semi-infinite cylinder with a 
uniform disk source centered at the end and uniformly heated. Results are given by infinite series, tables, 
figures and approximate relations. Care has been taken to provide methods for efficient evaluation of the 
infinite series because direct evaluation can require thousands of terms. Alternative exact methods are 
provided that require as few as three terms. 

The solution is intrinsically important but it is also a basic building block for spatially and time varying 
heat fluxes for finite as well as semi-infinite cylinders. This is discussed briefly herein and references for more 
extensive treatment are provided. The solution is also a basic one for the new numerical procedure called the 

surface element method. 
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NOMENCLATURE 

radius of heated area; 
radius of cylinder ; 
specific heat ; 
function defined by equation (23); 
complete elliptic integral of the second 
kind ; 
function defined by equation (19); 
function defined by equation (24); 
thermal conductivity; 
complete elliptic integral of the first kind; 
Bessel function of the first kind; 
heat flux ; 
radial coordinate; 
a number greater than 2.4 ; see equation 
(35); 
time ; 
temperature; 
initial temperature; 
axial coordinate. 

Greek symbols 

a, thermal diffusivity ; 

B 
I%), 

(2k + l)n/2; 
gamma function ; 

Un, x), incomplete gamma function; 
E, b-‘; 

P9 density. 

INTRODUCTION 

THE TRANSIENT temperature distribution in a semi- 
infinite cylinder heated over a disk-shaped region 
centered at the end is a basic problem in heat 
conduction. The region at z = 0 for 0 I r I a is 
considered to have a constant heat flux and the other 

surfaces are insulated as shown in Fig. 1. 
Analogous problems occur in electric heating, flow 

in porous media and mass transfer. 
The solution can be used as a building block in 

various problems associated with the contact con- 
ductance and temperature corrections for thermo- 
couples embedded in solids and at the surface of 
solids. For example, a new numerical technique called 
the ‘surface element’ method can utilize the solution as 
a building block [l]. 

Kennedy, in 1960, presented some analytical sol- 
utions and graphical results for the steady state case in 
finite cylinders [2]. He was interested in thermal and 
electrical spreading resistance within a package of a 
semiconductor device. The expression that he gave was 
evaluated at r =0 and z =O; for certain other loca- 
tions his series expression can be very slow to 
converge with thousands of terms required. 

In 1975 Yovanovich [3] presented the steady state 
portion of the solution for the semi-infinite cylinder. 
There is no steady state solution to the problem but the 
general transient solution does have a part that is time- 
independent and can be related to the contact con- 
ductance [3,4]. The solution provided by Yovanovich 
for the constant surface heat flux is similar to the one 
given by Kennedy [2] and the one given herein and can 
take thousands of terms in its evaluation. However, 
methods for a more efficient solution are provided 
herein. 

The solution derived herein is of interest for laser 
heating and drilling [5]. In [S] a transient solution in 
the form of an integral is given for plates so thin that 
only radial heat flow is considered. 

A similar problem to the one described in this paper 
was solved by Keltner and Wildin [6] in connection 
with analysis of foil heat flux gages. An infinite series 
solution was developed for a finite cylinder insulated at 
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FIG. 1. Semi-infinite cylinder heated over a disk-shaped 
region centered at r = 0 and z = 0. Insulated over all other 

surfaces. 

z = L and isothermal at the outer radius h. 
Steen [7] utilized finite elements to solve the trans- 

ient problem including convective and radiant surface 

heat losses. The motivation was the use of laser heating 

for surface hardening and surface alloying by vapor 
deposition. 

In the thorough paper of Jury et a[. [8] the 

motivation was the investigation of steady state end 
effects of heat, mass or electricity through a cylindrical 
rod. Some series solutions with numerical evaluations 
along with finite different calculations were presented. 
The steady solution for a finite cylinder that is 

isothermal at z = L was treated. Their series solution 
required only tens of terms for evaluation. 

The other extreme from steady solutions is the early 
time behavior. For small dimensionless times the local 
region in the vicinity of the disk source changes in 
temperature but the temperatures are negligibly 
changed beyond the local region. Hence for such early 

times the solution for a semi-infinite body can be used. 

The exact solution in terms of an integral is given in 
Carslaw and Jaeger [9]. Some series solutions that are 
easier to evaluate have been developed by Beck [lo, 

111. Another important integral form of the solution is 
given in [12]. 

An important reason that the semi-infinite cylinder 
is provided herein rather than a finite cylinder is that 

the former serves as a building block for finite 
geometries. It is a more basic building block. By 
superimposing solutions for sources (or sinks) at z = 0, 
*2L, +4L, . one can obtain results for finite 
cylinders that are insulated or isothermal at z = L 

[iO]. 

MATHEMATICAL DESCRIPTION 

The geometry and coordinates are shown in Fig. 1. 
A mathematical statement of the problem is the 

solution of 

k[;;(rg+gq=pcpg (1) 

_ k Wr, 0, t) -=I q forO<r<a 

dZ 0 fora<r<b 
(2a) 

Wb,z,t) = o 

ar Pb) 

T(r,z, t) + Ti for z + y_ (2c) 

T(r,z,O) = Ti (2d) 

where Ti is the initial temperature. For the other 

symbols, see the nomenclature. 

SOLUTION 

The solution is developed from the Green’s function 
solution for an instantaneous point source in an 

infinite insulated cylinder that is given on p. 378 of [9] 
which can be written as 

u(r, 8, z, t’) = 
e - ?/4zl 

2nb2 ,/(nat’) 

1 + f cosn(8 - W) f e-“““f 
“=--a i=l 

where (r’, W, 0) is the location of the point source, t’ is 

the time measured from the time of the energy release 
by the source, and a is the thermal diffusivity. This 
equation represents the temperature rise for the in- 
stantaneous point source. The eigenvalues i.i are found 

from 

J;(&b)=O, n=0,1,2 ,... (3b) 

where the prime on J denotes differentiation with 

respect to its argument. 

For a constant disk source at z = 0, the temperature 
at time t is equal to Ti plus (3a) multiplied by 2qr’ dr’ 
de’ dt’/pc, and integrated from t’ = 0 to t, r’ = 0 to a 
and 8’ = 0 to 271. (The factor 2 is needed because a 
semi-infinite rather than infinite cylinder is being 

considered.) 
An integral including the 0’ dependence is 

2a 

cosn(B - 0’)dB’ = 
2n for n = 0 
o 

for n = 1,2,...’ 
(4) 

0 

Consequently only the n = 0 term is needed in (3a) and 
eigenvalues are now found from 

J,(Aib) = 0, i = 1,2,. (5) 

Using the relation 

D 

r’J&r’)dr’ = F J,(i+) (6) 
0 -1 

one can obtain 
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qr, z, t) = Ti + 
2qa s f er’l(4d) 

pc,b2 Jz o (at’)“’ 

x 

C 1 dt’. (7) 

The remaining integration is over time. Note that 

where 

B(z, t) = (at)“’ ierfc[z/2 J(at)] 

1.r(at)“2 - z 
2(at)1/2 II 

- e’“lerfc 
C 

%r(at)“2 + - 
2(a:)“2 1 

where i = 1,2,. . . . Then (7) can be written as 

2qa 
T(r,z,t)=T,+k 

m Cdz, t)Jo(&r)Jl(&a) 
+c 

1=1 2[l.lbJo(3,,b)]2 

(9) 

(10) 

(11) 

(12) 

which is one form of the result that is being sought. 
In order to show the result given by (12) more 

conveniently it is put into a dimensionless form. 
Furthermore it is written in a manner to display a time- 
independent component. Let 

T+(r+,z+,t+) E 
w-9 z, t’ - Ti r+ =L z+ zz 

qafk ’ -a’ -a 

(13) 

t++ b+=$, %,?~l.,b. (14) 

Using these definitions but dropping the plus super- 
scripts gives 

Wz, t’ 
T(r, z, t) = - 

b2 

- ,cl Af(z7 t’~~~~~l(‘i’b’ + I(r, z, b) (15) 

where the eigenvalues are found from 

J,(%,) = 0 

and now B, A, and I are given by 

B(z, t) = t1/2 ierfc(0.5zt-‘/2) 

(16) 

(17) 

A,@, t) E e-Z’r* erfc 
%, t”2 
- - --?.- 

b 2t”Z 

+ er’llb erfc 

O” e-‘“i’bJo(i,ir/b)J1(Ri/b) 
I(r, z, b) = 2 1 

i=l [i~iJo(i.i)]2 ’ (19) 

There are several advantages of writing (15) in the 
form that is given rather than as the dimensionless 
form of (12). First it displays clearly the presence of a 
time-independent term I(r, z, b). For some cases Z(r, z, b) 
gives rise to a steady term. Note that for large times 
(t/b2 > 1 and t/z2 >> 1) the explicit sum in (15) goes to 
zero ; for such times 

W, t, 4 =$p(kyi2 -z]+I(r,z,b). (20) 

This solution can be used to derive a constriction 
resistance [3]. Second, for a given position (r, z) and b 
ratio, the function I(r, z, b) need be evaluated only 
once. This is important because the direct evaluation 
of I(r, z, b) can involve thousands of terms particularly 
as b becomes 10 or larger. Third, by focusing attention 
on this troublesome term some more effective methods 
of evaluation can be found. It is my conviction that an 
exact solution is not satisfactory unless it can be 
evaluated accurately with a moderate number of terms 
(less than 100, say). Computability is important. 
Several methods suggested for efficiently evaluating 
I(r, z, b) are given below. 

DISCUSSION OF SOLUTION 

Before displaying specific results, several obser- 
vations are made. For the limiting case of b = 1, i.e. 
uniform heating over the end of the cylinder, the 
summations given in (15) and (19) are both zero 
through the use of (16). In this case the temperature 
distribution is the well-known one-dimensional result 

PI of 
T(z, t) = 2t’12 ierfc(0.5zt-‘/2) (21) 

which does not exhibit a steady state solution. For the 
other extreme value of b-r cc the geometry is a semi- 
infinite body [lo, 111 for which a steady state exists. 
Provided b is larger than one, the semi-infinite body 
solution can be used if the value of t/b2 is sufficiently 
small. 

The explicit summation in (15) converges much 
more rapidly for t > 0 than I(r, z, b) at z = 0 (and 
possibly for all z’s). For the small times, t < 0.02z2, the 
explicit summation is negligibly small. Both sum- 
mations tend to converge rapidly for z>O, partic- 
ularly if z > 0.3b. Fewer terms are needed in (15) as t 
becomes large. In fact, for z < b only one term is 
needed in the summation of (15) if t> b2. For small t’s 
many terms may be needed but then the semi-infinite 
body solutions [lo, 111 can be used. 

A location of particular interest is at the surface, z 
= 0, where the dimensionless temperature can be 
written as 
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+ W, 0, b) 

OT erfc(n,t’!2/b)J,(i,ir/b)J,(i.i/b) 
-21 

i=l [3LiJo(1.i)]2 (22) 

Table 1 can be used to obtain numerical comparisons. 
The denominator in the summation of (22) and in 
I(r, z, b) is denoted Di 

(23) 

which is the second row of Table 1. It monotonically 

increases with i. The term 

G,(r, b) = Jo(nir/b)Jl(i,i/b)/Di (24) 

is given for r = 0,l and b for b = 2,s and 10. For z = 0, 
G,(r, b) is the ith term in the summation of I(r, 0, b). For 
z > 0, the magnitude of each term in I(r, z, b) is less 

than the corresponding one in Table 1 for the same r 
and b values due to the presence of the exp( - z&/b) 
term in (19). The same is true in the explicit summation 

of (22) because erfc(x) is always less than unity for 
x > 0. 

As indicated in Table 1 the 1 Gi(r, b)I terms are 
always less than unity. As a consequence it is possible 

for z to be sufficiently large in (19) so that I(r, z, b) is 
negligible in value; this occurs when 

e-rJ.db < lo-8 or z > 9.2bJ3.8 2 2.4b 

where lo-’ is taken to be close enough to zero. This 

implies that for z > 2.4b the temperatures are the same 
as for a uniformly heated end with the same total heat 
flow as in the disk source. (Only three terms are needed 
if z is as small as 0.756.) 

If z = 0, the number of terms required to evaluate 
I(r,O, b) can run into the thousands. This is particularly 
true for large b values as suggested by the G,(O, 10) 
terms in Table 1. Fortunately there are much more 
efficient methods to evaluate I(r, 0, b) than using the 
expression given by (19). Some of these methods are 
given in connection with (27) to (35). 

The explicit summation part of (22) is much easier to 
evaluate than I(r, 0, b) due to the presence of the erfc( . ) 
term. For sufficiently large values of t”*/b, the sum- 

mation is negligibly small and no terms are needed. 

Table 1. Numerical values of some terms in I(r, z, b). Di and 
G,(r, b) are defined by equations (23) and (24) 

i= 1 i=2 i=3 

Ri 

& 2) 
G,(O, 5) 
G(0, 10) 
G(L2) 
G(l, 5) 
W, 10) 
G(2,2) 
G(5,5) 
G(lO,lO) 

3.83171 
2.38164 
0.24383 
0.14936 
0.07897 
0.06647 
0.12822 
0.07610 

- 0.09820 
-0.06016 
-0.03181 

7.01559 
4.43308 
0.03025 
0.12238 
0.07436 

-0.01153 
0.06916 
0.06549 
0.00908 
0.03673 
0.02232 

10.17347 
6.45345 

_ 0.05207 
0.08898 
0.06905 
0.00775 
0.01815 
0.05231 
0.01300 

-0.02222 
-0.01724 

This is because erfc(x) decreases very rapidly with x for 
x > 2; for example, erfc(x) is less than lo-’ for x being 
greater than 3.8. The first Ri value is about 3.83. 

Consequently no terms are needed (to within an error 
of lo-‘) for t”*/b > 1 or 

t > b2 (25a) 

which is a convenient expression. If only three terms 

are used, then necessarily 

t > b*/4. (25b) 

For only somewhat smaller ts than this, the semi- 
infinite solution is valid [ll]. 

At this point the difficulty in utilizing the solution 

given by (22) is in evaluating I(r, 0, b). After presenting 
some results I@, 0, b) will be considered further. 

GRAPHICAL AND TABULAR RESULTS 

The temperature distribution at the surface is 
illustrated in Fig. 2 where the dimensionless tempera- 
ture is plotted versus dimensionless radial position for 

the dimensionless times of 0.01, 0.1, 1, 10 and 100. 

Some of the same information is contained in Table 2 
and 3. Notice that the t = 0.01 curve is very flat over 

the heated area until r 2 0.9 and then drops to about 
zero beyond r 2 1.1. For such early times the tempera- 
ture distribution over the heated area is almost 
identical to that obtained in a semi-infinite body 

heated uniformly over its surface. The temperature 
distribution from (21) reduces to 

T(0, t) = 2(t/n)’ ‘2. (26) 

Also for such a small dimensionless time nearly the 

same surface temperature distribution would be found 
for any b value greater than about 1.1. Somewhat 
similar behavior is noted for t = 0.1 but the uniform 
temperature region is now smaller. In addition, the 
temperature rise extends out to r % 1.8 ; consequently 
until t = 0.1 the temperatures for r 2 0 are identical for 
all bs greater than 1.8. In other words, the tempera- 
tures for t 2 0.1 and 0 < r < b < 1.8 are identical to 

those obtained in a semi-infinite body heated by a disk 
source [ 111. For a more precise comparison the early 
time values given in Tables 2 and 3 can be compared 
with those tabulated in [ll]. The b = 10 values 
provided in Table 3 deviate only in the sixth place for t 
= 0.1 from the semi-infinite values [ll]. 

The effect of the boundary at r = b is felt at ‘large’ 
times. In Fig. 2 two t = 10 and t = 100 curves are 
shown with the solid curve representing b = 10 and the 
dashed curve b = 5. The temperatures are increased 
due to the presence of the insulated boundary at r = b. 

Another way to look at the surface temperature is to 
examine plots of specific locations as a function of r. 
See Fig. 3 which is a log@og plot of T vs t for r = 0, 1,2 

and 10 for b = 10. The straight line on the upper left 
represents the surface temperature of a uniformly 
heated semi-infinite body (b = 1). At the center (r = 0) 
and for t < 0.1 the T curve is nearly the same as if the 
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--- b=S 

-b=lO 

--------- 

I 2 3 4 5 

FIG. 2. Dimensionless local temperature distribution at z = 0 for various dimensionless times as a function of 
dimensionless radius. 

Table 2. Local transient temperatures for b = 2 for various radii 

Time, t r = 0.0 
Temperatures for various radii values 

r = 0.5 r= 1.0 r= 1.5 r = 2.0 

0.01 0.112838 0.112836 0.054825 o.OOOoo1 0.0 
0.1 0.352882 0.336874 0.162280 0.009498 0.000766 
0.5 0.631692 0.578342 0.314891 0.083427 0.047691 
1.0 0.738065 0.679560 0.403971 0.160964 0.120769 
5.0 1.090040 1.030823 0.753556 0.508948 0.468 133 

10.0 1.351319 1.292102 1.014835 0.770226 0.729412 
50.0 2.453968 2.394751 2.117484 1.872876 1.832062 

100.0 3.280205 3.220988 2.943720 2.699 112 2.658298 

Table 3. Local transient temperatures for b = IO for various radii 

Time, t 
Temperatures for various radii values 

r=O r = 0.5 r= 1.0 r= 1.5 r = 2.0 

0.1 0.352882 0.33687 0.16228 0.009490 0.000371 
1.0 0.729097 0.668299 0.38471 0.124565 0.051148 

10.0 0.911166 0.845566 0.5485 1 0.268722 0.172673 
50.0 0.969185 0.903452 0.60600 0.325571 0.228648 

100.0 1.002254 0.936521 0.63907 0.358639 0.261715 
500.0 1.141730 1.075997 0.77855 0.498 114 0.4oi190 
800.0 1.208570 1.142837 0.84539 0.564954 0.46803 1 

1000.0 1.24624 1 1.180508 0.88306 0.602626 0.505702 

body were uniformly heated. At r = 1 and for t < 0.01 
the temperature rise is almost exactly one-half that 
given at r = 0. The above comments apply for any b 
2 2. For the large times (t > 104) the temperatures 
again vary linearly in the log-log plot and dem- 
onstrate that no steady state condition exists for 
finite b. 

Figure 4 is similar to Fig. 3 but the curves are for the 
center location of r = 0, z = 0. Several b values are 
shown. The b = 1 curve is for a completely heated 
surface; the geometry can be either a semi-infinite 

body or a semi-infinite cylinder. The b = 2, 5 and 10 
curves are for a semi-infinite cylinder and b+oo 
corresponds to a semi-infinite body heated only over a 
disk-shaped region. A steady state condition exists 
only for the latter case. For the finite b’s a quasi-state 
condition exists. 

Because the temperatures rise indefinitely with time 
for finite b values but with a quasi-steady state being 
attained, it is instructive to plot 

? /.\lL? 
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FK;. 3. Dimensionless centerline temperature at z = 0 for several b values. 

FIG. 4. Dimensionless local temperature vs dimensionless 
time for various r values for b = IO and z = 0. 

versus r for various times. Results for b = 2,5 and 10 
are depicted in Fig. 5. The approach to a quasi-steady 
condition is shown to occur in the least time for the 

smallest b value. The quasi-steady state values in Fig. 5 
are simply I(r, 0, b) which illustrates the importance of 
the latter term. 

VALUES OF I(r,O,h) 

The function I(r, 0, b) is shown in two different ways. 
Table 4 gives values as a function of r/b and b-’ = E. 

Figure 6 shows I(r, 0, b) versus c for fixed r values. In 
this figure the I(r, 0, b) curves are seen to be almost 
linear with I: for small values of R. 

The I: = 0 (or equivalently b+ x’) case corresponds 
to the physical geometry of a semi-infinite body [ll]. 
For this case of b-+ TL 

-01 I I I I I I I I I 
0 I 2 3 4 5 6 7 8 9 

r 

FIG. 5. Dimensionless local temperature minus (2a-‘)(t/n) I” vs dimensionless radius for various times and b 
= 2, 5 and 10. 
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qoooooooooo 

FIG. 6. I(r, 0, b) vs i: = b- ’ for fixed radii values 

= -E(r), 0 5 r I 1 
71 (27a) 

Wb) 

where K( ) and E( .) are the complete elliptic integrals 
of the first and second kinds, respectively. For large r 

values (27b) can be approximated by 

I(r,O, ‘cc) z &. (28) 

The linearity of I with E in Fig. 6 suggests the 
approximation of 

I(r,O,b) 2 I(r,O, zc) - 1.106824/b (29) 

which is valid for b > 10. This is interesting in that it 
indicates that the difference I(r, 0, b) - I(r, 0, x) does 
not depend on r. The approximation provided by (29) 
is excellent provided r < b/4. 

For r = 0 and any c (= b-l), Z(0, 0, R) can be 
approximated by 

I(O,O,e) = 1 - 1.1068248 - 0.0007172~~ 

+ 0.1038745~~ - 0.0084825k + 0.0121492~’ (30) 
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which is accurate to six decimal places. At the extreme 
r value, namely b, and for large b’s one can use 

I(b, 0, b) 2 - 0.384796-l + 0.0222W’ (31) 

which is accurate to four significant figures for b > 5. 

EVALUATION OF I(r,O,b) USING SERIES 

There are several ways to reduce the computation 

(24), the effect of the disk source has been smoothed 
out by the z/b ratio of about 2.4. The present solution 
can be superimposed (utilizing sources and sinks) to 
obtain the result for a finite cylinder for steady state 
and transient conditions. If the length L of the cylinder 
is taken to be 2.4b (or greater), the only source (or sink) 
having a significant contribution is the source at z = 0. 

Utilizing the solution given by Jury et al. [S] it can 
be shown that for r > 1 

load in evaluating I(r, 0, b) from series expressions. 
Two of these utilize known transient solutions and a 
third employs another equivalent series. 

The first of these methods evaluates I(r, 0, b) by 
equating (15) to the known solutions of 

T(r, 0, t) = 2(t/n)“‘, 0 % r < 1 (32a) 

T(l,O,Q= (t/K)“2 (32b) 

T(r,O,t)zO, r> 1 (32~) 

provided t is sufficiently small such as 0.0001. The 
resulting equation is solved for I(r, 0, b). Rather than 
thousands of terms only hundreds are needed. 

The same idea can be employed with the semi- 
infinite body solution [ 1 l] with times large compared 
to 0.0001 but still small enough so that the tempera- 
tures at the point ofinterest are changing as though the 
body were semi-infinite. Using this approach with T(r, 
0, t) in (22) replaced by the semi-infinite solution 
denoted T,,i, (r, 0, t) yields 

L erfc(%it”2/b)Jo(i.ir/b)J,(i.i/b) 
I(r,O,b)a 2 1 

i=l [A Jo( 

2 t l/2 
+ T,.i.(r,O,t) - 2 ; 

0 
(33) 

Any time t satisfying 

t I O.Olb’ (34) 

can be chosen to solve (33); this criterion applies to 
any r. If r is small, say r c: 1, then even larger times are 
possible such as 

t < b2A 

where A = 0.025 for b = 2, A = 0.04 for b = 5 and A 
= 0.1 for b = 10. The largest permissible time in (33) 
reduces the required number of terms, i,,,, in (33) to 
only 3 or 4. Clearly this means a tremendous reduction 
in computation though TS,Jr, 0, t) must still be 
evaluated. Fortunately the latter can also be calculated 
with a small number of terms [ll]. 

The final method to be mentioned utilizes another 
series expression that is given in [S]. In this paper the 
steady state solution is given for a finite cylinder 
maintained at z = L. As pointed out below equation 

where %? = 2.4 or larger and flk = (2k + l)n/2. The 
larger W is made, the more terms are needed. For all r 
values somewhat greater than one, (35) can be ef- 
ficiently evaluated. For example, for b = 10, r = 5 and 
z = 0 only 16 terms are needed. 

Though the series expression is relatively straight- 
forward to evaluate, mistakes can be made. When 
Jury et al. [8] utilized this series for r=b and z=O 
for an electrical heater problem, they made some 
computational errors. In their Table I they gave a 
voltage from double precision calculations as 
19.6552396 . . . while their finite difference calculation 
for the same point was 19.62678. Carefully using their 
expression gives the value of 19.616009 which shows 
that their finite difference value was more accurate 
than their ‘exact’ result. This coincides with my 
previous experience that ‘exact’ series expressions are 
not easy to evaluate even when the required number of 
terms is not large. That is why it is helpful to have some 
correct values available as (I believe) are given in 
Table 4. 

In conclusion, the simplest way to evaluate Z(r, 0, b) 
is to use Table 4 if the needed values are contained 
therein. Interpolation is possible throughout most of 
the table. For large b values (29) is very convenient and 
(30) is good for all b’s for r = 0. For r = b and large b, 
(31) can be employed. For any r and b, the series given 
by (33) is very efficient although it requires the semi- 
infinite body solution [ll]. Since the semi-infinite 
body solution for the times required usually needs 
fewer than ten terms, the method based on (33) is 
recommended. 

SUMMARY 

An exact series solution is developed for a semi- 
infinite cylinder insulated on the sides and with a disk 
source centered at the end. Graphs and tables are 
provided to provide insight into the solution. The term 
in the exact solution, I(r, z, b), can take thousands of 
terms to evaluate in a direct fashion. Much more 
efficient methods are provided. 

The solution is a basic one in heat conduction. It can 
be utilized to obtain many related solutions for steady 
state as well as transient cases, finite as well as semi- 
infinite cylinders [lo], and for various space and time 
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variations of the surface heat flux [3,10,1 l]. The given 
solution can be considered to be a building block for 
many other cases. It can be utilized for various 

complex connected bodies using the surface element 
method which is currently under development. 
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TEMPERATURES VARIABLES DANS UN CYLINDRE SEMI-INFINI, CHAUFFE PAR UNE 
SOURCE DE CHALEUR EN DISQUE 

R&urn&-L’article est une partie d’un ensemble de textes, par l’auteur, donnant la distribution exacte de 
tempbrature variable dans des corps chauffks par des sources de chaleur en disque. Ici, il s’agit d’un cylindre 
semi-infini avec un disque-source central B I’extrtmitC et uniformiment chauff& Les rCsultats sont donnts sous 
forme de sbries infinies, de tables, de figures et de relations approchkes. Une attention est portte aux m6thodes 
pour l’tvaluation de l’efficacitk des stries infinies car une Cvaluation directe peut nCcessiter un millier de 
termes. Des methodes exactes aItem& sont foumies qui demandent a peine trois termes. 

La solution est intrinsequement importante mais elle constitue aussi une base pour les flux thermiques 
variables aussi bien pour les cylindres finis que semi-infinis. Ceci est discutt briivement et des rkftrences pour 
un traitement sont fournies. La solution est aussi une base pour la proctdure numtrique nouvelle appelte la 

mithode des tltments de surface. 

INSTATIONARE TEMPERATURVERTEILUNG IN EINEM HALBUNENDLICHEN ZYLINDER, 
DER VON EINER KREISFORMIGEN WARMEQUELLE BEHEIZT WIRD 

Zusammenfassung-Der Aufsatz gehlirt zu einer Serie von Arbeiten des Autors zur exakten instationlren 
Temperaturverteilung in KGrpem, die von kreisfiirmigen WLrmequellen beheizt werden. Im vorliegenden 
Fall ist der KGrper ein halbunendlicher Zylinder mit einer gleichfiirmigen Quelle in Form einer Kreisfllche 
und gleichmlBiger Beheizung. Die Ergebnisse werden als unendliche Reihen, Tabellen, Diagramme und 
Ngherungsliisungen angegeben. Es wurde Wert auf effiente Auswertungsmethoden fiir die unendlichen 
Reihen gelegt, weil die direkte Auswertung die Berilcksichtigung Tausender von Gliedern erfordern kann. 
Gelnderte Methoden werden angegeb-en, die z. B. nur drei Glieder erfordern. Die LGsung an sich ist bereits 
wichtig, sie stellt aber darilberhinaus such eine GrundlGsung fiir den zeitlich und Grtlich versnderlichen 
WCrmefluB sowohl in endlichen als such halbunendlichen Zylindern dar. Hierauf wird kurz eingegangen, 
und Hinweise fiir eine ausfiihrlichere Behandlung werden gegeben. Die LGsung ist such Grundlage eines 

numerischen Verfahrens mit der Bezeichnung “Oberfllchenelement-Methode”. 
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HECTA~~OHAPHOE llOJIE TEMDEPATYP B ~O~Y6~CKOHE~HOM ~~~~H~PE. 
HAI-PEBAEMOM TEFUIOBbIM MCTOYHMKOM B @OPME BIHCKA 

.hOTNUU- npCJ,JW'aeMWl CTaTbIl IlBnReTCIl 'IaCTbloCepWf pa6OT aBTOpa 00 HCClleAOBaHKK, HeCTa- 

UHOHapHOrO PaCn~ACJ-EHNR TeMUepaTyp B TenaX. Har~BaeMMX TeWlOBblMH HCTO'lHHKaMH B $OpMe 

ArtCKa.BAaHHOiiCTaTbepaccMaTpMBaeTc~ nOJIy6eCKOHe'IHblti UWllfHAp.Ha TOpUe KOTOpOrO II0 LleHTpy 

pacnono~eHpaeHoMepwopacnpeneneHHb~~BcT0s~~~TennaB~opMe nwcKa.Pe3ynbTaTbrnpeacraenem 

B BHAe 6eCKOHeqHblX pnAOB, Ta(imU, PWCYHKOB H npH6nhixeHHblX COOTHOllleHUii. OcoBoe BHWMaHHe 

yneneH0 060CHOBaHkfkO MeTOAOB PaC'ieTa 6CCKOHe'lHbIX PKAOB, TBK KBK AJIR llpKMOr0 PaC'leTa Tp 

6yeTCR OrpOMHOe YHCJIO WleHOB pana. npeRCTaBJleHb1 TBKXCe ,!lpyrtie TOVHbIe MeTOilbI. Tpe6yfoWie 

Bbl'+HCneHI(I ffe6oJW TpeX WIeHOB. 

nonyseHHoe peuIeHue He TOnbKO npeAcTaBnnneT HHrepec CaMO no ce6e, HO H CnymaT OCHOBOA 

pa‘-,CTa H~TaUHOHapHOrO Hai-pBa XOHeSHblX II nOny6eCKO~eYHbtX U~nHH~~B. 3TOT BOnpc K)XlTKO 

o6cyx~~eTc~ BCTaTbeW ~P~BO~~TCK CCblJiKil Ha WTOPHIIKU,B KOTOpMX AileTCI( 6onee UOAHbIii aHanW.3. 

Ha OCHOBC petUeHl+K @3pa60TaH TaKme HOBblii q~C,~eHH~~ MeTOA, Ha3~~aeMb~~ MeTOAOM WIeMeH- 

TapHbiX IlOBepXHOCT&. 


